
With a new format and fresh content, SDN is the fi rst web magazine for Syllable.
Whatever your level of expertise, we hope you’ll fi nd something interesting to read.
SDN will cover news about Syllable and events when they happen.
There is information for users old and new, and articles for developers of all experience levels.
You’ll fi nd interviews with developers and contributors from the Syllable community.
Maybe there will be the odd exclusive...
Just like Syllable, SDN is a community effort. If there is something you would like to see in SDN,
you can submit your own articles for publication.

Thanks to everyone who has contributed to this fi rst edition of SDN. We hope you enjoy reading!

Kristian Van Der Vliet

Welcome to the new SDN!

Syllable News #01 August 2007

Inside this magazine:

Kristian Van Der Vliet
Multi-threaded C++

Henrik Isaksson
Collecting garbage

Mike Saunders
Users review: Linux and Syllable...

Flemming H. Sørensen
Local and National groups

Kaj de Vos
Indepth interview

The revival ofthe Syllable newsletter

 #1

�

Understanding how Syllable uses messages is the
key to developing with Syllable. Using libsyllable is
very different to older APIs such as Win32, or the
Slots/Signals system favoured by APIs such as Qt.
Libsyllable is most similar to the BeOS API, so if
you’ve ever programmed on BeOS you’ll feel right at
home on Syllable.

The basic concept of a message is very simple. The
Message class is a container for key/value pairs, with
a code that acts as a unique identifier. Messages
can be sent between applications, or generated
by Controls when the user manipulates the GUI.
Applications communicate with the various servers,
such as the appserver or registrar, using messages.
You can use Messages to send almost any type of
data you would like.

The most common form is a Message which has no
key/value pairs. It is only a unique code that is used
to indicate that “something happened”, for example
the user has selected an item from a
drop-down menu. Slightly more complex forms have
one or more key/value pairs which provide extra
information or data to the receiving application. In
its most complex form a Message may contain other
messages, or multiple key/value pairs with the same
key. This is possible because keys also have an op-
tional index. Don’t worry too much about this right
now: these types of Message are very rare.

If someone sends a Message, your application must
have some way to receive it. There are two classes,
Looper and Handler, which work closely together
to accept and process Messages. Each of the classes
are really very simple. The Looper runs in its own
thread and waits for a new Message to arrive by
calling the get_msg_x() function. When a Message
arrives, the Looper passes it to a Handler, which
in turn acts on the Message which has just been
received.

There is a certain amount of artistic licence in the
previous description where a lot of the finer details
have been glossed over, but from the point of view
of an application developer it doesn’t actually matter.
You only need to be aware that Messages are sent
and subsequently received by a Handler, which may
be running in its own thread thanks to a Looper.

Sending Messages between threads is what makes
multi-threaded C++ so painless. There is no need for
multiple threads to share state between themselves.
If there is no shared data, there is very little need for
any locking. Each thread can be fully autonomous,
sending and receiving Messages between them-
selves instead of attempting to juggle shared vari-
ables and avoiding deadlocks. Once you’ve tried it,
you’ll never let anyone tell you multi-threaded C++ is
hard again!

Now you’ve got a proper grounding in the theory,
we’ll start to put it all together in the next article by
building a real application.

By Kristian Van Der Vliet

The phrase “multi-threaded C++” can be enough to make even a seasoned developer break out in a
cold sweat. Hopefully it won’t surprise you to learn that things aren’t that complicated with Syllable.
The API is written in C++, and it is multi-threaded, but Syllable has a third component that makes
things easy: Messages.

Multi-threaded C++

�

Reaching the user
What is it a local/national group can do, that an
international community can’t do? First of all, they
can provide news, and general information in the
users’ native language. Not everybody is comfort-
able with the English language, and when we are
talking about something as basic as the software
that runs your computer, you need to get the infor-
mation in your own language. It’s just like going to
your doctor.
This doesn’t just apply to news and general
information. The most important thing of all, is how
we help people. It’s not just about the language,
and surely the national groups can do that part
better, because they speak the same language as
the users, but it’s also a matter of culture. This is, in
end-user relations, the most important asset of the
local/national groups.
Because of this, you might see groups, that covers
several countries, with similar languages and
culture. At the same time you might, in other parts
of the world, see several groups with the same
language, in the same country, but based on
different culture.

Promotion & Media-contact
But that’s not all, these groups can do. Far from.
They know their local area better, and that way
they can promote Syllable far better than a large
international group can do. They know the press,
and (again) the culture, so they can focus on what
is important in that area. When you promote an
operating system, do you promote it on its stability?
Its price? Do you promote it on the fact that a local
developer is working on it? Or something else?
We might like to think it’s the first, but most likely it
won’t be, because we’re not talking to tech-people.
We’re talking to real human beings. People who got
bills to pay. People who like to feel they are using
“their own” system, through a local developer.
Humans are emotional, not logical, and there’s
nothing wrong with that, we just have to keep it in
mind.

Documentation
Documentation is also an area where the groups
can make a real difference. Making documentation
is not just a matter of writing it once, and then keep
translating it, till the day you’ve got all languages
covered. The most obvious thing might be the
illustrations, that also needs to be adapted to the
right language, but there’s also a lot of hidden
things, that we should not forget. What a user
expects from the documentation might vary from
culture, to culture. A German user would not expect
the same as a Korean user, because they live in
different worlds, and relate to things differently.

Software translation
Something else the groups can do, is organizing
the translations, so instead of a central place with
contact to each translator (the way it is now), it will
be the national groups that makes the translations,
and send it to the central place. That will also ensure
a higher quality, because the groups can provide
peer-review, in a way that will be hard to do other-
wise, when the number of languages grows.

After having written one page on the subject,
without having done anything but touching it briefly,
I think it’s clear that the local/national groups will play
an important role, in the future of Syllable, and is
something we should give priority to, and help build.
It is my intention to touch that subject too, in a later
article.

Today, the groups are small, and mostly one-man projects, where nothing happens. I think this is
because of the limited number of users, and the fact that the current users are followers and developers,
more than they are real end-users. They are just not that interested in national communities.

Local & National Groups

By Flemming H. Sørensen

�

Example 1, checking for leaks:
 #include <gc/leak_detector.h>

 int main(void) {
 char *pointers[2];
 GC_find_leak = 1;
 GC_INIT();
 pointers[0] = malloc(120);
 pointers[1] = malloc(120);
 pointers[0] = malloc(120);
 CHECK_LEAKS();
 free(pointers[0]);
 free(pointers[1]);
 CHECK_LEAKS();
 }

The first use of CHECK_LEAKS() will detect a leak;
since pointers[0] has been overwritten, you can no
longer access or free the memory allocated.

Before you can get started, you’ll need to download,
compile and install the garbage collector. This is really
easy thanks to the wonderful Builder system.
Here are the commands you need:
 build update
This will make sure the build system is up to date
 build get gc-7.0

Downloads the GC sources
 build gc-7.0

Configure and build the library
 build install gc-7.0

Yep, this will install it :)

Note: If you get an error saying “unknown thread
package” when trying to build, then do this:
 cd gc-7.0
 autoconf -o configure configure.ac
 cd ..
 build gc-7.0

To compile a C program, type
 gcc myprogram.c -o myprogram -lgc

Example 2, collecting garbage:
 #include <gc/leak_detector.h>

 int main(void) {
 char *pointers[2];
 GC_INIT();
 {
 char *short_lived_mem = GC_malloc(123);
 // do something
 }
 pointers[0] = GC_malloc(1024);
 pointers[1] = GC_malloc(2048);
 // Do stuff with the memory
 }

Notice that there is no free() call here. All memory
will be released when the application exits.
Memory that is not used may be freed earlier.
The “short_lived_mem” in this example may be
collected as soon as it is out of scope and no longer
accessible. It will probably be held longer, since it’s
just a single small object, but the point is that you
don’t need to care about it. The collector will stay
out of the way most of the time, and only begin
collecting when it’s really necessary.

With this article I will try to explain briefly what use you can make of the Boehm Garbage Collector,
recently ported to Syllable.

Garbage collection automates the task of keeping track of, and freeing, allocated memory.
This makes life easier for the programmer and reduces the risk of memory leaks. Languages like C# and
Java rely on garbage collection, while C and C++ require the programmer to manage allocated resources.
With the Boehm GC, you can have this feature in C and C++ as well. You can also use it to check your
programs for memory leaks.

Collecting garbage

By Henrik Isaksson

�

I’m a Linux fan (and work for a Linux magazine), but
I strongly believe we shouldn’t invest all our effort
into one particular OS. Imagine if Linux was the
only thing being worked on, and, somehow, SCO
managed to win its court cases. Where would we
be? Up a certain creek with no paddles in sight - no
projects to fall back on. But thanks to the variety of
open source operating systems, if Linux had gotten
tangled up in a legal mess, we had FreeBSD as a
near drop-in replacement for it.

But but but...
Some of the arguments that people use against
Syllable could have been levelled at Linux in its
early days. “But it doesn’t support all hardware and
doesn’t have many programs!” Well, nor did Linux in
its early days. That’s no reason to give up now. “Just
give it a few more years and Linux will be on main-
stream desktops!” Sorry, but we’ve been hearing this
for nearly a decade now.

Now I love Linux, I love the vast playground of cool
technology that it brings in, and it has certainly got
a lot slicker in recent years. Without a shadow of
a doubt, it’s ready for enterprise workstations and
many home-user desktops. But there are certain
aspects of the OS, such as the lack of a standard
desktop, package installation system and set of
graphical configuration tools that can’t be sorted out
any time soon. Sure, variety and choice is good, but
for a sizeable chunk of the home user market, these
things are definite problems.

When I started playing around with Syllable back
in 2003, it had plenty of rough edges. The under-
lying code was impressive, but the GUI and apps
screamed “hobbyist project”. Since then, we’ve seen
amazing changes. The desktop has been completely
redesigned, many new drivers have been included,
and we have a great email client and Webkit-based
web browser in the works. One thing has remained
the same, though: the focus on simplicity.

Less is more
Much as I applaud the end-user-focused work in re-
cent Linux distributions - and they certainly manage
to shield users from the underlying complexity - it’s
still a tremendously complex OS under the hood. In
comparison, Syllable doesn’t need as many opaque
layers to insulate the user, because it’s much cleaner
in some respects. Synaptic in Linux may cover up the
fact that it’s scattering a zillion files all over your hard
drive, but there’s no need to hide this in Syllable: you
just extract a progam into Applications.

That’s one example, but there are many areas where
Syllable exceeds Linux in simplicity - the kind of
simplicity that matters enormously to a big segment
of the home-user market. I hope the wider open
source community starts to give Syllable the credit it
deserves, and not throw tantrums because it’s not
Linux. Both OSes have their plus points; they can co-
exist peacefully and productively. The mass-market
desktop is still waiting for an open source killer OS,
so isn’t it good that we have more than one to offer?

By Mike Saunders

“Why Syllable? Why another OS? Why not just help to make Linux better?” If I had a penny for every
time I’ve seen those questions, I’d have enough for a Big Mac now. Yet this seems to be the prevail-
ing attitude amongst certain vocal parts of the open source community - but it’s not just Syllable that
receives such flak. Haiku, ReactOS and even the BSDs often suffer the same reaction whenever they
get some press.

Syllable and Linux

�

In this month we have DOSBox, Bochs, and Winter.

DOSBox
DOSBox is a DOS emulator, that will let you run your old
DOS programs and games.
The news announcement had this to say:
”The old Syllable port of the DOSBox emulator was never
integrated in the build system, so it didn’t work any more
after SDL was integrated into the base system some time
ago. Fortunately, Rui Caridade has ported it again in the
newest version. He even got it to run at full speed”.

Bochs
Bochs is another emulator, but instead of emulating an
operating system, it emulates the whole computer.
The news announcement said this:
”There hasn’t been a working package of the Bochs
emulator available for Syllable for a long time, but there
is now a new version in our downloads. If you are
new to Bochs, please refer to the Bochs site for further
instructions”.

Winter
In this first edition of the new SDN, we have the pleasure
of something as rare as a new decorator. It has been a
few years since that last happened. A decorator should
be seen instead of talked about, and that might be why
the news announcement didn’t say much:
”For the first time in a long time, Syllable got a new
window decorator again. John Aspras created the Winter
decorator, with a very particular design”.

We intended to make a small Magazine CD, but have instead chosen to make an Archive.
In this Archive, you will find a file with a description of the content of the Archive, and how to install it.
All software has been tested on a clean install of the latest public release, to make sure it will work for
everybody. Some months there might be a lot of software, and other months there might be almost
nothing, it all depends on how much software is released.

Archive instead of a CD

By Flemming H. Sørensen

DOSBox

Bochs

Winter

�

Once again for who really doesn’t know:
how has Syllable started?

I’m not the best one to ask because I was a by-
stander, really. I had only recently found AtheOS,
the predecessor project, but was dismayed that it
already seemed to be going down the tube. Kurt
Skauen, AtheOS’ creator, had been making headlines
for a few years (as I found out when reading up) by
consistently releasing substantial work at a fast pace.
Eventually, however, real life caught up with him,
as it has a habit of doing. He seemed to be going
through a series of small setbacks that conspired to
cause him to leave work on AtheOS for a while. This
didn’t need to be the end of it, but a community had
built up around AtheOS and people were expecting
a lot from Kurt. He, on the other hand, had always
maintained that it was a hobby to him. Consequent-
ly, he didn’t really want to deal with the community
aspects of such a far-reaching project. Actually, he
did, but always with the understanding that he didn’t
really care about that part. This had always caused
friction between him and the community that he
hadn’t really asked for, and when he dropped out of
the picture for a while, it came to a climax.
It’s a weird and actually rather wonderful story. We
have a mythical founder from Norway, who single-
handedly forged a complete operating system that
was awesome to behold. Common folk surrounded
him to bask in his glory and there were many trolls
among them. The code smith grew weary of their
unwanted attention and their endless chatter. His
interest in his creation waned, and he took it upon
himself to embark upon a new journey to explore the
skies of the world. Nine months he spent, and built
himself an air ship. One day he set sail and disap-
peared into the blue yonder, never to be seen or
heard of again.
This is a true tale I tell you. Kurt bought a second-
hand Cessna to learn how to fly. The computer on
which he developed AtheOS had broken down, but
he didn’t want to replace it until he had paid for the
repairs that he needed to make to his air plane. We

heard this story piece by piece, because Kurt disap-
peared almost completely, with his machines and In-
ternet connection broken down. He tried to get back
a few times, but was angered by what people had
said in the meantime. Kurt had never wanted AtheOS
to fragment, but one fork had already appeared, to
put AtheOS on the Linux kernel, no less. After nine
months, both Kurt and the community were fed
up. Kristian Van Der Vliet concluded that Kurt was
not coming back and announced his own version
of the project that he had been working on, under
the name Syllable. The other project, Cosmoe, was a
fork, and its technical foundation was shaky. It shifted
focus over time and didn’t attract many contributors.
The Syllable project was much more straightforward.
It continued what AtheOS had started, collecting all
the contributions from other people that were float-
ing around, and opening up the development to
the community. The rest, as they say, is history. Just
remember that somewhere out there, a mysterious
pilot is haunting the skies, with an awesome operat-
ing system on his name that lives on as he does.

How did you become involved in Syllable?

At the time, in late 2001, I had been trying to use
Linux for a few years. Some of those attempts were
successful; others were disastrous. It was clear to me
that free software must be the future, but it was also
becoming painfully clear what a long road ahead
there was. I am an independent consultant and
developer. My co-workers were deeply immersed in
proprietary technology, but I was trying to add free
software to the mix in appropriate places. There was
a turn of events where I had to implement much
more functionality on Linux than I had wanted to.
I succeeded in the end, but not before the whole
thing had burned me out. I felt bitten by a raging
penguin. In that state, burned out but desperately
trying to keep on top of technology gone wild, one
evening I was reading one of my many Linux maga-
zines. I think it was Linux Magazine, actually, and it
contained an article about AtheOS. It jumped out at

Indepth interview with Kaj de Vos
When you want to know all about the people working on, with and
for Syllable, you need to interview them. This is why I start this new
item in the revived SDN: an indepth interview. I’m not sure if I’ll ask
the same questions to all people here, for becoming too repetitive.
Sometimes the first is the best: three pages. Read and learn!

Kaj de Vos

By Ruud Kuin

�

me. It sounded so... perfect. It was clear that here
was someone with a brilliant grasp of what needed
to be done and the will to do it, and he did it with
free software. I started researching on the Internet
and didn’t stop reading for the rest of the night. At
the end of that night, I knew it was the project I had
been searching for.

So that’s how I became involved with AtheOS: it was
an overnight decision. :-) It was right before Kurt’s
hiatus, and when that story unfolded, it felt like my
just-found future was already crumbling before me.
Going back was not an option, either to the golden
cage of Windows or to the arena to be thrown be-
fore the wild penguins. I never told this, but I started
plotting escape plans for when Kurt would drop
the ball. As it turned out, Vanders (Kristian Van Der
Vliet) had done the same, and he was probably the
only one who could have pulled it off. While I was
new to all this, he had experience and standing in
the community and succeeded in gathering a group
around him. When he came forward with his project,
I joined the discussions for the first time and offered
my services.

What do you do for Syllable and how does
Syllable support your development?

A wonderful thing happened. I had always been a
loner, but for the first time in my life I was working
with people at and above my own level on a deeply
shared goal. The whole project felt like a puzzle fall-
ing into place. We were few, but we all had our own
specialities and areas to work on. Even though it was
a huge undertaking, it was a very soothing feeling
that I didn’t have to do everything myself and that
we could trust each other to do great work.

I created the build system that I had been contem-
plating. It takes all the program source code for all
the parts that make up the system and uses it to build
the system, every time a part has changed. Or you
can build single applications with it. Such a system
makes full use of the open nature of free software,
and it is essential to scale up the creation of a large
project such as Syllable. It took a long time to repro-
duce what Kurt had done in AtheOS and make it
repeatable. Only in the past year, after five years, did
we reach the point where it was fully automated and
dependable. By that time, however, all parts of the
system were updated and we had reached a level of
great flexibility.
Most of my work stems from this main project. I still
develop the build system further and update system

components and third-party programs regularly. I do
many other things all over the project, but they are
usually to support this main work. With few develop-
ers, everyone has to be a jack of all trades.

What do you think of the last
Syllable release; 0.6.4?

The best thing since sliced bread, of course. ;-) Well,
it’s really a good release. In terms of software build-
ing, we have reached the state that you can install
a clean Syllable without extra fixes, and the develop-
ment tools, and that’s enough to build the complete
system from source, with up-to-date components. On
itself, because Syllable has always been what is called
self-hosting. In terms of stability and polish, 0.6.4 is
the result of two releases that we have produced
under formal, public bug tracking, which has shaken
out a lot of the smaller bugs that were still in there.
Last year we already took care of most of the big
bugs. In terms of applications, Syllable just became a
lot more usable due to our new web browser. There
are also the new address book, improvements to the
email program, and a number of ported applications
that have been contributed lately.

How do you see the future for Syllable
and yourself?

Well, I’ve had a bright future all my life. :-) Syllable fits
in with that. We’re going to do great things.
My professional field is groupware, and besides soft-
ware building, that’s what I’ve been planning to do
in Syllable. It has been a long road, though. First we
needed to build the basic operating system. We are
now getting around to interesting new projects. The
Syllable Server that I have been building is the start of
that. The informed reader will know that it’s built on
the Linux kernel. It means that I have gone back into
the arena and subdued all the evil penguins! Total
domination! They will now forever be my servants.
They will do my bidding and run my groupware for
me.

What are the main obstacles today in the
development of Syllable? Participation,
tools, something else?

Participation, and that follows from usability. Since we
don’t have many applications yet, few people really
use Syllable. With no real stake in the project, they
don’t feel like contributing. That said, a lot more can
already be done with Syllable than people realise. So
we must make that known, certainly now that we

�

have reached a higher level of usability, and this is
where the Syllable Newsletter can help. But above
all, we must make the system more ready for produc-
tion use. Our ace card to do that is Syllable Server,
which will be stable long before Syllable Desktop,
and will have applications sooner. In terms of tools,
the only thing we really lack is a high-level program-
ming language that can be used to write graphical
applications. We plan to fix that with REBOL.

Comparing your project to other hobby
OSes, where do you feel that your project
excels and where does it lack?

We have always been ahead of other alternative
OSes in terms of the hard underlying values of an
operating system, such as design, efficient resource
use, stability, hardware support and build properties
such as self-hosting and third-party application sup-
port. This is hard to see if you don’t look under the
surface or don’t know where to look. Other systems
have appeared to be more advanced by just polish-
ing their looks or porting popular applications while
the underlying system still has a hard time to support
them. We do it in the order that is right in technical
terms and haven’t spent our efforts on promotion
much in the past. This is changing, because our base
system is now robust enough to entrust it to early us-
ers and start putting the polish on.
Getting these basic values right is a lot more difficult
than the polish. We expect to be accelerating com-
pared to some of the other projects that are trying
to do it the other way around. Apart from this thin
veneer, the only thing we lack compared to projects
that recreate an old system is an existing community.
While this is a difficult starting position, I have been
in a dwindling community in the past, and I wouldn’t
want to be in that situation again. Syllable is looking
towards the future, instead of the past.

What kind of apps are in general missing
from Syllable that users usually ask for?

Users ask for a lot, so I’m not sure that’s a good metric
to go by if you don’t have a thousand developers.
We always work on things that are within reach. A
long journey has to be made in small steps. We have
most of the applications covered that you would ex-
pect to find included with an OS, but in many cases
they’re not mature yet. Most others are simply miss-
ing, but we don’t have the time to work on them.
We need to attract contributors to do those.

What would you advise other developers
out there that might want to write/partici-
pate in Syllable?

Start small. Many inexperienced programmers try to
do something big and fail. Computer systems are
so complex that they can only be mastered in small
steps. Break problems down in steps as small as possi-
ble. Don’t even start by programming, start by install-
ing the system and looking around. This goes for
other tasks as well. Don’t start a complete new web
site, or a complete book, start by contributing small
things to the sites that already exist.
The other thing is to focus on producing. Anything.
Don’t keep mulling over your master design without
producing anything in the meanwhile. If you don’t
produce the first step, and the second, and the third,
you will never finish the last step. More importantly,
all the steps in your master plan, except maybe the
first, are wrong. I am speaking out of experience. You
will know, too, when you gain experience, but if you
don’t produce all the time, you will never gain the ex-
perience to know what’s wrong with your next step.
You will not be able to have a meaningful conversa-
tion with the other developers, either, because they
have found out that they have to work on steps that
you don’t see yet.
Take down one penguin at a time. :-)

What technical and other challenges are ly-
ing ahead for these devs?

In many cases, psychological problems. As I men-
tioned, you can imagine that a problem is so big and
intimidating that you never start on it. You can try to
do things in the way they’re customary on other sys-
tems and end up in a fight with the system - or with
the other developers. :-) Syllable is different enough
that you will have to adjust some of your thinking.
You may hold some wrong beliefs that people have
told you. For example, you may have heard that
multi-threading is difficult and therefore evil. Well, it is
on some systems, but in Syllable we don’t like abso-
lute rules. The goal is not to be perfect, because this
will paralyse you and will keep you from producing
the next step. The goal is to be on the way to perfec-
tion, and to believe that you can come close. Multi-
threading, for example, is done right in Syllable. It
results in huge advantages such as a very responsive
user interface and is still easy to program. But you
will have to learn how it works. Step by step.

Thanks Kaj!

10

Users are not there for us, but when looking at most
operating systems today, it looks like the developers
think so. We are there for the users, and we have to
keep that in mind, in everything we do, or we will
end like all the other operating systems out there;
user-hostile, instead of user-friendly.
If we make a system, where we need to educate the
users, we have made it the wrong way. We should
not educate the users, we should get educated by
the users.

Now, do we have to change the way we talk?
No, this is just about consciousness raising.
When you say “One man, one vote”, you don’t
mean “One male, one vote”, you mean
“One person, one vote”. It should be the same,
when we talk about the users.

The users. How do we get (more) users? It’s not really a fair question, because with this question, we’re
implying that the users are there for us. We actually compare them to drivers, programs, etc.,
as if they were a part of the system. Something we can form and change, as we please.

Let’s talk about the users

By Flemming H. Sørensen

Syllable supports more than just Latin-style scripts. Good
examples of this, are the Russian, Bulgarian, and Greek
translations. A few weeks ago, we even got a Chinese
translation of aclock. It works, but it might be worth
noticing that we don’t support CJK input, so the trans
lation had to be made on a non-Syllable system. Person-
ally, I’m looking forward to a full Chinese translation.

We don’t do quite as well, with the right-to-left scripts.
We tried an Arabic translation, but it turned out un
successful, but one day in the future, support will
be added, and it will be possible to have Arabic and
Hebrew translations too.

Non-Latin(-script) translations
By Flemming H. Sørensen

I hope you enjoyed reading this first version of the
“revived” SDN. It is our wish to keep you informed
on the development of Syllable in all its stages
through this e-magazine. If you think you need to
share information with us or with newbies, about
Syllable or any program used by Syllable, or program
you think that needs to be ported for Syllable, feel
free to write an article.

This e-magazine is meant for everyone who is busy
writing code, testing OS’es or just interested in
Syllable, so don’t hesitate to write!

Take a look at our site:
www.syllable.org
If you want to share an article with us, mail:
sdn@syllable.org

You can help too!

By Ruud Kuin

11

G
lu

e
h

er
e

G
lu

e h
ere

3. Be amazed!

1. Insert

2. Boot on CD

Insert the Syllable CD-rom in your CD or DVD-drive.

Follow the boot instructions.

Try Syllable without installation!

Live CD version 0.6.4

